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Personal bests act as reference points. Examining 133 million chess
games, we find that players exert effort to set new personal best
ratings and quit once they have done so. Although specific and
difficult goals have been shown to inspire greater motivation than
vague pronouncements to “do your best,” doing one’s best can
be a specific and difficult goal—and, as we show, motivates in a
manner predicted by loss aversion.
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There is nothing noble in being superior to your fellow man; true
nobility is being superior to your former self.

Attributed to Ernest Hemingway

A long line of research suggests that small differences in out-
comes are felt disproportionately when they bridge a ref-

erence point separating psychological losses from psychological
gains (1–3). This phenomenon of loss aversion explains a num-
ber of empirical puzzles: aversions to gambles in which losses
are possible (4), aversions to parting with randomly endowed
objects (5), and aversions to selling investments at a loss (6, 7).
Reference points provoke aversions to losses, thereby distorting
important decisions. But where do reference points come from?

One source of reference points is externally generated goals
(8), such as round numbers. For instance, baseball players, stu-
dents, and marathon runners exert effort to outperform round-
numbered batting averages, standardized test scores, and race
times, respectively (9, 10). However, reference points can also
be internally generated, as when they correspond to expectations
(11, 12) or sunk costs (13). In this paper, we propose that the
internally generated goal of one’s personal best, or past peak
performance, acts as a reference point. For example, real estate
agents may try to beat their biggest sales, auctioneers may try to
beat their highest bids, and teachers may try to beat their best
evaluations.

We study personal bests in the context of chess ratings. We
hypothesize that players will stop playing once they set a new
personal best rating, out of an aversion to falling behind, and
that they will play longer and try harder when a personal best is
in reach, hoping to eclipse it. We ground these hypotheses in a
simple utility model, which we detail in Materials and Methods. In
our model, players choose whether to play and how much effort
to exert if they do. The loss-averse player experiences a positive
shock when her rating eclipses the reference point (10). In SI
Appendix, we model how reference-dependent risk preferences
affect opponent selection, but we find no support for the theo-
rized relationship in the data.

A principal difficulty in testing these hypotheses is that indi-
viduals are typically far from their best, and hence behavior near
personal bests is rarely observed. We overcome this difficulty
by using a massive dataset comprising 133 million online chess
games played by 70,000 players, in which we observe 284,000
instances of new personal bests being set.

We find that a player’s best rating acts as a reference point.
First, win rates increase as players approach their personal best
ratings, suggesting that players exert effort to set new personal
bests. Second, players quit at discontinuously higher rates after
setting new personal best ratings, consistent with an aversion to
falling back into the domain of losses. For comparison, we con-

duct comparable tests for round-numbered ratings. Whereas per-
sonal bests influence both decisions over whether to play and
how much effort to exert during games, round numbers only
influence decisions over whether to play.

The literature on goal setting concludes that specific and
appropriately difficult goals inspire greater motivation than
vague pronouncements to “do your best” (14, 15). Yet, when
performance is quantifiable, doing one’s best is a specific goal.
It is also calibrated to be appropriately difficult (cf. ref. 16)—
rarely impossible, and, if too easy, quickly surpassed and reset.
We show that people exert effort to do their best and quit once
they have done so, consistent with loss aversion around personal
best reference points.

Results
To test our theoretical predictions, we conduct an empirical anal-
ysis of behavior around personal bests in the context of chess rat-
ings on the Free Internet Chess Server (FICS). A chess player is
assigned a rating, updated after every game she plays, that esti-
mates her skill level. The FICS rating system is simple: when a
player wins, her rating goes up, and when she loses, it goes down.
How many rating points each player would gain with a win or
lose with a loss depends on the difference in the players’ rat-
ings (see Materials and Methods for further details on the rat-
ing system). Ratings fluctuate around a player’s true skill, and,
when these fluctuations reach a new peak, the player sets a new
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Fig. 1. Example user information display. RD measures the variance of a
player’s rating.

personal best. The rest of the time, her current rating trails her
personal best.

Chess ratings are highly visible. Fig. 1 shows an example user’s
information page, which publicly and prominently displays the
player’s current rating and best past rating. Current ratings are
also shown beside players’ names when playing a game, and
players receive text and sound notifications when they reach a
new personal best.

We construct our dataset from the complete set of blitz games
(which are expected to last between 6 min and 30 min) played
on FICS between 2000 and 2015. Our unit of analysis is the
“player-game,” of which there are two per game: one for the
white pieces and one for the black pieces. The complete set
of blitz games comprises 313 million player-games across 156.5
million games. To produce the dataset for our main analyses,
we carry out a series of filtering steps. For example, we fil-
ter out player-games before a player’s 200th game, to allow
players to establish a meaningful personal best; we filter out
player-games where the player’s rating is too uncertain; and we
filter out player-games where the player has achieved a per-
sonal best in the last 20 games, so as to consider instances in
which beating a personal best is a meaningful goal (see Materials
and Methods for more details). After filtering, our dataset com-
prises 212 million player-games across 133 million games. Our
results do not depend on these filtering restrictions; as described
in SI Appendix, we replicate our empirical results with differ-
ent filtering parameters and obtain meaningfully unchanged
results.

Fig. 2 shows a histogram of games at each value of the dif-
ference between a player’s current rating and her personal best
before her last game. Players are typically far from their per-
sonal best ratings—the median difference is −118 points, and
only 3.7% of games are played within 30 points of the player’s per-
sonal best. For reference, in most cases, a win against an equally
rated player adds 8 points, a loss to an equally rated player sub-
tracts 8 points, and the greatest possible rating change from a sin-
gle game is 16 points. In the histogram, values to the right of 0 rep-
resent instances of players setting new personal bests. Although
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Fig. 2. Histogram of the difference between current ratings and personal-
best ratings (zoomed in near the reference point on the right).

only 1 in 750 player-games results in a new personal best, we
still observe 284,000 instances of personal bests being set.

We observe how behavior changes as players approach and
surpass their personal best ratings. In the main text, we report
average outcomes for each rating point difference between a
player’s current rating and her personal best rating. Where com-
parisons are made between players whose ratings are just shy of
their personal bests and those who just set a new personal best
by winning the previous game, we restrict the sample to the 101.5
million player-games that follow a win. This restriction ensures
that observations on either side of the reference point are
comparable.

To observe how behavior changes as players approach their
personal bests, we compare behavior when players’ ratings are
close to their personal bests with behavior when players’ rat-
ings are farther away. One concern with this approach, however,
is that certain types of players may be close to their personal
bests more often than other types of players. Thus, differences in
behavior may be confounded by differences in player attributes.
To address this concern, we run comparable regressions with
player fixed effects, which we report in SI Appendix. These esti-
mates reflect only within-player differences in behavior, rather
than differences between players.

Quitting. What happens when players set new personal bests?
Fig. 3A shows how the probability of quitting varies with the dis-
tance between a player’s current rating and her personal best rat-
ing from before her last game. We define quitting as not playing
another game within 1 h of finishing the most recent game; in
SI Appendix, Fig. S8, we show qualitatively identical results for
a 24-h threshold. The probability of quitting jumps across the

A B

Fig. 3. Probability of quitting for at least 1 h around personal bests (A) and round numbers (B), with 95% confidence intervals.
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A B

Fig. 4. Performance short of personal bests (A) and round numbers (B), with 95% confidence intervals.

reference point—a 4.5 percentage point, or 20%, increase. As
predicted, players are discontinuously more likely to quit after
setting a new personal best.

This effect is more pronounced for more-frequent players
and for long-standing personal bests. Among the half of players
whose median time between games is less than 10 min, the prob-
ability of quitting jumps 29% (a 4.6 percentage point increase
from a baseline of 15.7 percentage points), compared with a jump
of 14% (a 4.1 percentage point increase from a baseline of 30.5
percentage points) among less frequent players. Breaking a per-
sonal best that is fewer than 20 games old is associated with a
9% jump in the probability of quitting (a 2.0 percentage point
increase on a baseline of 22.2 percentage points), compared with
a 20% jump in the probability of quitting (a 4.5 percentage point
increase on a baseline of 21.9 percentage points) for personal
bests that have stood for at least 20 games.

Achieving a personal best precipitates not only a higher rate
of quitting but also longer quitting spells. Among those who quit
with ratings one point short of their personal bests, the median
duration between games is 752 min. Among those who quit after
eclipsing their personal bests by one rating point, the median
duration between games is 816 min.

For comparison, we measure quitting near round numbers,
which have been shown to act as reference points in other domains
(9, 10). Fig. 3B shows how the probability of quitting varies with
the distance to the nearest multiple-of-100 rating (where all rat-
ings ending in 51 to 99 are to the left of 0, and all ratings end-
ing in 01 to 50 are to the right of 0). As with personal bests,
players are discontinuously more likely to quit after breaking a
century marker—players with ratings ending in 01 quit 3.5 per-
centage points more often than players with ratings ending in 99.
This relative increase of 20% is the same as the corresponding rel-
ative increase around personal bests. (There is also a smaller dis-
continuous jump around the round number of 50—players with
ratings ending in 51 quit 0.6 percentage points, or 3.3%, more
often than players with ratings ending in 49.) By this comparison,
personal bests motivate as powerfully as round numbers.

We find evidence of a goal gradient, or the increase in inten-
sity often observed when a goal is imminent (17–19), for round-
numbered ratings but not for personal bests. The probability of
quitting decreases as ratings approach a multiple of 100 but stays
flat as ratings approach personal bests. We suspect that this dis-
parity follows from differential awareness of the two reference
points, rather than differential motivation. Players receive notifi-
cations of their personal best ratings only after they eclipse their

previous best. Current ratings, by contrast, are shown beside
player names during every game they play. Hence, players whose
ratings trail their personal best ratings are likely more aware of
their proximity to round-numbered reference points than to their
personal bests.

Effort. Do players try harder when a personal best is within
reach? Effort is difficult to observe directly, so we measure effort
indirectly as performance relative to expectations. Specifically,
we compare observed win rates to predicted win rates, where the
predicted win rate is the empirically observed probability of a win
for a given difference in ratings between the player and her oppo-
nent. (We treat a draw as half a win.) In our data, players win
50% of games against equally rated opponents, they win 62% of
games against opponents whom they outrate by 100 points, and
they win 73% of games against opponents whom they outrate by
200 points. Do players win more often than these expectations
when they are close to their best ratings?

If effort enhances performance, and if players try harder when
a personal best is in reach, then win rates will outperform expec-
tations when current ratings are just short of personal bests.
However, ratings fluctuate around a player’s true skill, imply-
ing that higher ratings overestimate ability. Hence, regression to
the mean predicts that win rates will underperform expectations
as current ratings approach personal bests. Jointly, these effects
predict that regression to the mean will subside, and may even
reverse, near personal bests.

Fig. 4A shows the difference between observed and predicted
win rates as a function of a player’s rating distance from her per-
sonal best. Away from the reference point, performance declines
as ratings increase, in line with regression to the mean. How-
ever, the trend abates about 10 rating points from the reference
point—approximately the distance at which a win could realis-
tically set a new personal best rating. At the reference point,
performance is ∼1 percentage point higher than if the prevail-
ing trend had continued unabated. This suggests that players try
harder when near their personal best—so much so as to reverse
the regression to the mean. Although we cannot identify the
mechanism by which performance improves (whether by height-
ened concentration, computer assistance, selection of overrated
opponents, or other means), the improvement implies that play-
ers find some way to exceed expectations when a personal best is
within reach.

Does effort subside just after setting a new personal best rat-
ing? In SI Appendix, Fig. S9, we estimate the same performance
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measure for players who have just set a new personal best. As
in the quitting analysis, we restrict the data to player-games fol-
lowing a win, to ensure that observations on either side of the
boundary are comparable. We find that performance is similar
across the boundary. Players continue exerting effort after set-
ting a new personal best, likely in pursuit of another.

As in Quitting, we perform a comparable analysis for round-
numbered ratings. We do not expect a regression to the mean
for round numbers, since there is no analogous selection effect
on the last two digits of the rating. Fig. 4B shows the differ-
ence between observed and predicted win rates as a function of
a player’s rating distance from round numbers. Actual perfor-
mance is almost identical to expected performance throughout
the entire range, implying that, when just shy of round-numbered
ratings, players do not increase their effort enough to improve
performance. By this comparison, personal bests inspire more
effort than round numbers.

Discussion
Quantitative measures of performance are ubiquitous, and peak
performance along these measures is often salient. Many students
care about their highest test scores (20), and many athletes care
about their fastest times (21). Moreover, quantitative measures
of performance are proliferating. Recent educational programs
in the United States expanded the use of test scores to evaluate
schools and teachers (22), and new devices quantify performance
along dimensions hitherto ignored. For instance, the proliferation
of accelerometers on wrists and in pockets has created a sudden
awareness of, and competitiveness over, the most steps one has
taken in a day (23). When performance can be tracked, peak past
performance becomes a salient benchmark for comparison.

Previous research shows that peak events factor disproportion-
ately in experienced utility (24) and self-perceptions (25). We
show that peak performance acts as a reference point. Individ-
uals exert effort to achieve new personal bests and quit once
they’ve done so.

Materials and Methods
The Rating System. FICS assigns a rating to every player at every point in
time using the Glicko algorithm, which is an extension of the popular Elo rat-
ing system used by official chess federations (26). The algorithm is Bayesian
and models a player’s rating as a Gaussian belief distribution characterized
by a mean and a variance, with an initial mean of 1,720 points and an initial
variance of 350 points.

The mean is the player’s rating and is updated from game results accord-
ing to the ratings of the players. The amount the player gains from winning
a game is a logistic function of the rating difference between the player and
the opponent. For a rating difference D = ratingplayer− ratingopponent, the

victory reward is ∆ = k(1− 1/(1 + 10−cD)) rating points, where c≈ 1/400,
k is the maximum victory reward (usually 16), and the penalty for losing
is k−∆ points. The constant c is calibrated such that the expected rating
change is always zero. Hence, a victory reward of ∆ is associated with a win
probability of 1−∆/k. For instance, a player who chooses ∆ = 3k/4—i.e.,
who gains 3k/4 rating points with a win and loses k/4 rating points with a
loss—is expected to win 1−∆/k = 25% of the time.

The player’s rating variance decreases as she plays more games and
increases as time elapses since her last game. This variance is used in two
ways: (i) to determine whether a high rating counts as a personal best—
ratings only count as personal bests when the variance is below 80—and (ii)
to scale the maximum victory reward k. Ratings are designed to fluctuate
more when they have high variance, so the maximum victory reward is an
increasing function of rating variance.

The rating system is well calibrated. SI Appendix, Fig. S10 shows a cal-
ibration plot comparing predicted and actual win rates at each victory
reward when k = 16. Predicted and actual win rates match closely at every
victory reward. All of the details of the exact FICS implementation of
the Glicko rating system can be found online (www.freechess.org/Help/
HelpFiles/glicko.html).

Data Preparation and Descriptives. Our data comprise the complete set of
blitz games—i.e., with a maximum duration between 6 min and 30 min—

played on the FICS between 2000 and 2015. Each observation is a player-
game: For each game, there are two player-games, one for either side. We
exclude player-games for which the player (i) joined FICS before January 1,
2000, (ii) is a computer account—either a bot or a human who uses chess
program assistance during her games, (iii) plays against computer accounts
in >25% of games, (iv) has played fewer than 200 games, (v) has a rating
variance greater than 80, or (vi) set a personal best rating in the previous
20 games.

The first restriction ensures that we have complete data for every player
in our dataset, which starts on January 1, 2000. The second limits our atten-
tion to human players. The third excludes players who may be abusing the
rating system; players who play too many games against bots may be repeat-
edly exploiting known bot weaknesses to unfairly gain rating points. The
fourth affords players the opportunity to set meaningful personal bests. The
fifth restricts our attention to player-games that could potentially count as
personal bests; a rating can only count as a personal best if the rating vari-
ance is less than 80. The final restriction limits our analyses to instances in
which personal bests are likely to be meaningful goals. Absent this restric-
tion, our analyses are complicated by the fact that players close to their
personal bests are a mix of two different populations: those who just set
a personal best and then lost and those who have not set a personal best
recently.

This filtering leaves a dataset of 212 million player-games, for which we
observe the identity of the player, her rating, and her best rating; the iden-
tity of the opponent and her rating; the game result; and a timestamp for
when the game began.

Effort Model. Consider a player with rating r contemplating a game with a
victory reward ∆∈ [0, k]. If she wins, her rating rises to r + ∆; if she loses,
her rating drops to r + ∆− k. The probability of winning is increasing in
e∈ [0,∞), the effort she exerts. We represent this relationship with a cumu-
lative distribution function, F(e; ∆); for brevity, we write this function as
F(e). Infinite effort guarantees victory; zero effort guarantees a loss. We
assume that the first unit of effort increases the probability of winning the
most, or, more generally, that marginal gains from effort are decreasing—
i.e., F′′(e)< 0. Effort is costly, however, with a cost, c(e), such that c(0) = 0
and c′(e)> 0. We further assume that the first unit of effort is the least
costly, or, more generally, that the marginal cost of effort is increasing—i.e.,
c′′(e)> 0.

We are interested in how proximity to a reference point influences a loss-
averse player’s willingness to play and her exertion when she does. Follow-
ing ref. 10, we assume a piecewise-linear value function that jumps at a
reference point θ,

v(x) =

{
x + ε x>θ
x x≤ θ.

The jump at θ implies loss aversion—i.e., the player experiences the greatest
loss when a fixed decrease in r shifts her rating from the domain of gains to
the domain of losses.

Effort. We first evaluate the player’s effort conditional on choosing to play.
In particular, we consider two ratings: one such that r + ∆≤ θ—i.e., the
player cannot reach the reference point even if she wins—and another such
that r + ∆− k≤ θ < r + ∆—i.e., a win puts the player above the reference
point, and a loss puts her below it.

The player’s expected utility sums over four components: a positive utility
shock from playing, which we denote α, the valuation of her rating were
she to win; the valuation of her rating were she to lose; and the cost of
effort. For r + ∆≤ θ,

E[U(e)] =α+ (r + ∆)F(e) + (r + ∆− k)(1− F(e))− c(e). [1]

The optimal, or utility-maximizing, effort level satisfies the first-order
condition

k · F′(e)︸ ︷︷ ︸
Marginal

expected gain

= c′(e)︸︷︷︸
Marginal

cost

. [2]

The player exerts effort until the marginal expected gain is equal to the
marginal cost. If the first unit of effort is more beneficial than costly—
i.e., if k · F′(0)> c′(0)—then there exists a unique utility-maximizing effort
level. Both existence and uniqueness follow from the assumptions of strictly
declining marginal gains from effort (F′′(e)< 0) and strictly increasing
marginal costs of effort (c′′(e)> 0).
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Now consider the expected utility of a player for whom r + ∆− k≤ θ <
r + ∆,

E[U(e)] =α+ (r + ∆ + ε)F(e) + (r + ∆− k)(1− F(e))− c(e). [3]

The optimal effort level satisfies the first-order condition

(k + ε) · F′(e)︸ ︷︷ ︸
Marginal

expected gain

= c′(e)︸︷︷︸
Marginal

cost

. [4]

When the outcome of the game determines whether the player ends up
above or below the reference point, her marginal expected gain is greater
than when the outcome could not change her position relative to the refer-
ence point.

To determine how the optimal effort level changes between Eqs. 2 and 4,
we derive a relationship between the optimal effort level, e∗, and the coef-
ficient on the marginal gain. Consider a generalized form of the first-order
condition, a · F′(e∗) = c′(e∗), where a> 0. Then, by the Implicit Function
Theorem,

∂e∗(a)

∂a
=

−F′(e∗)

aF′′(e∗)− c′′(e∗)
> 0, [5]

where the inequality follows from our assumptions about winning prob-
abilities (F′(e)> 0, F′′(e)< 0) and costs (c′′(e)> 0). An increase in a, or
the marginal gain from effort, increases the optimal effort. Hence, the
reference-dependent player exerts more effort when the outcome deter-
mines which side of the reference point she falls on.

Quitting. We now consider how the player’s proximity to the reference
point influences her willingness to play. A player is willing to play if her
expected utility from playing is greater than her utility from not playing,
which is simply the value of her rating, v(r). Let ∆ be such that r + ∆− k≤
θ < r + ∆—i.e., the player will end above the reference point if she wins and
below the reference point if she loses. Let e∗ be the optimal effort when
close to the reference point—i.e., the effort level that solves the first-order
condition in Eq. 4. Then she plays if and only if v(r)<E[U(e∗)], or

v(r)<α+ r + ∆− k + (k + ε) · F(e∗)− c(e∗). [6]

We are interested in how the player’s willingness to play changes as her
rating moves across the reference point. When the player’s rating is below
the reference point, then v(r) = r, and she plays if

α> k−∆ + c(e∗)− (k + ε) · F(e∗). [7]

When the player’s rating is above the reference point, then v(r) = r + ε, and
she plays if

α> k−∆ + c(e∗)− (k + ε) · F(e∗) + ε. [8]

Hence, the threshold for playing is higher (by ε) when the player’s rating
is above the reference point than when her rating is below the reference
point. In other words, the player needs to gain more utility from playing—
i.e., she needs to have a higher α—to absorb the risk of falling below the
reference point.

Further, assume that players enjoy playing to different degrees—i.e., that
for player i, αi is drawn from a distribution Gα. Thus, the probability that
a player just below the reference point chooses to play is 1−Gα(γ), where
γ≡ k−∆ + c(e∗)− (k + ε) · F(e∗); the probability that a player just above
the reference point chooses to play is 1−Gα(γ+ ε). This implies that the
probability of playing drops—or that the probability of quitting jumps—at
the reference point by an amount equal to Gα(γ+ ε)−Gα(γ).

Goal Gradient. Our model also implies a goal gradient, or that a reference-
dependent player will be more willing to play as her rating approaches
the reference point. To see this, compare two players with ratings short
of the reference point. For the first player, r1 + ∆>θ—i.e., a win would
push her rating past the reference point. For the second player, r2 + ∆≤ θ—
i.e., a win would not push her rating past the reference point. The model
predicts a goal gradient if player 1’s threshold for playing is lower than
player 2’s.

Player 1 plays ifα> k−∆ + c(e∗1 )− (k + ε) · F(e∗1 ), as in Eq. 7, with e∗1 solv-
ing the first-order condition in Eq. 4. Player 2 plays if α> k−∆ + c(e∗2 )−
k · F(e∗2 ), with e∗2 solving the first-order condition in Eq. 2. Hence, player 1’s
threshold for playing is lower if (k + ε) · F(e∗1 )− c(e∗1 )> k · F(e∗2 )− c(e∗2 ), i.e.,
if the expected net gain from winning (in utiles) is greater for player 1 than for
player 2. This condition always holds. The player exerts effort until marginal
gains equal marginal costs. Since e∗1 > e∗2 , player 1 exerts more effort than
player 2, implying that net gains are larger for player 1.

ACKNOWLEDGMENTS. We thank participants at the 2017 Summer Deci-
sion Making Symposium, International Conference on Computational
Social Science 2017, and the 2017 Meeting of the Society for Judg-
ment and Decision Making, as well as Dan Goldstein, Dorothy Kronick,
Nicolas Lambert, Alex Markle, Alex Rees-Jones, Maurice Schweitzer, Joe
Simmons, Uri Simonsohn, and Glen Weyl for helpful discussions and com-
ments on previous drafts. We are also indebted to Jake Hofman, without
whom this paper would not exist. We are grateful for generous financial
assistance from Microsoft Research, The Wharton School, and the University
of Toronto. Part of this work was conducted while A.A. and E.A.G. were at
Microsoft Research New York City.

1. Kahneman D, Tversky A (1979) Prospect theory: An analysis of decision under risk.
Econometrica 47:263–292.

2. Tom SM, Fox CR, Trepel C, Poldrack RA (2007) The neural basis of loss aversion in
decision-making under risk. Science 315:515–518.

3. De Martino B, Camerer CF, Adolphs R (2010) Amygdala damage eliminates monetary
loss aversion. Proc Natl Acad Sci USA 107:3788–3792.

4. Rabin M (2000) Risk aversion and expected-utility theory: A calibration theorem.
Econometrica 68:1281–1292.

5. Kahneman D, Knetsch JL, Thaler RH (1990) Experimental tests of the endowment
effect and the Coase theorem. J Pol Econ 98:1325–1348.

6. Odean T (1998) Are investors reluctant to realize their losses? J Finance 53:1775–
1798.

7. Genesove D, Mayer C (2001) Loss aversion and seller behavior: Evidence from the
housing market. Q J Econ 116:1233–1260.

8. Heath C, Larrick RP, Wu G (1999) Goals as reference points. Cognit Psychol 38:
79–109.

9. Pope D, Simonsohn U (2011) Round numbers as goals evidence from baseball, SAT
takers, and the lab. Psychol Sci 22:71–79.

10. Allen EJ, Dechow PM, Pope DG, Wu G (2016) Reference-dependent preferences: Evi-
dence from marathon runners. Manage Sci 63:1657–1672.

11. Mellers B, Schwartz A, Ho K, Ritov I (1997) Decision affect theory: Emotional reactions
to the outcomes of risky options. Psychol Sci 8:423–429.
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